74 research outputs found

    Sets Represented as the Length-n Factors of a Word

    Full text link
    In this paper we consider the following problems: how many different subsets of Sigma^n can occur as set of all length-n factors of a finite word? If a subset is representable, how long a word do we need to represent it? How many such subsets are represented by words of length t? For the first problem, we give upper and lower bounds of the form alpha^(2^n) in the binary case. For the second problem, we give a weak upper bound and some experimental data. For the third problem, we give a closed-form formula in the case where n <= t < 2n. Algorithmic variants of these problems have previously been studied under the name "shortest common superstring"

    On Quasiperiodic Morphisms

    Full text link
    Weakly and strongly quasiperiodic morphisms are tools introduced to study quasiperiodic words. Formally they map respectively at least one or any non-quasiperiodic word to a quasiperiodic word. Considering them both on finite and infinite words, we get four families of morphisms between which we study relations. We provide algorithms to decide whether a morphism is strongly quasiperiodic on finite words or on infinite words.Comment: 12 page

    Generalised Lyndon-Schützenberger Equations

    Get PDF
    We fully characterise the solutions of the generalised Lyndon-Schützenberger word equations u1u=v1cdotsvmw1wnu_1 \cdots u_\ell = v_1 cdots v_m w_1 \cdots w_n, where ui{u,θ(u)}u_i \in \{u, \theta(u)\} for all 1i1 \leq i \leq \ell, vj{v,θ(v)}v_j \in \{v, \theta(v)\} for all 1jm1 \leq j \leq m, wk{w,θ(w)}w_k \in \{w, \theta(w)\} for all 1k?n1 \leq k ?\leq n, and θ\theta is an antimorphic involution. More precisely, we show for which \ell, mm, and nn such an equation has only θ\theta-periodic solutions, i.e., uu, vv, and ww are in {t,θ(t)}\{t, \theta(t)\}^\ast for some word tt, closing an open problem by Czeizler et al. (2011)

    Shortest Repetition-Free Words Accepted by Automata

    Full text link
    We consider the following problem: given that a finite automaton MM of NN states accepts at least one kk-power-free (resp., overlap-free) word, what is the length of the shortest such word accepted? We give upper and lower bounds which, unfortunately, are widely separated.Comment: 12 pages, conference pape

    The Identity Correspondence Problem and its Applications

    Get PDF
    In this paper we study several closely related fundamental problems for words and matrices. First, we introduce the Identity Correspondence Problem (ICP): whether a finite set of pairs of words (over a group alphabet) can generate an identity pair by a sequence of concatenations. We prove that ICP is undecidable by a reduction of Post's Correspondence Problem via several new encoding techniques. In the second part of the paper we use ICP to answer a long standing open problem concerning matrix semigroups: "Is it decidable for a finitely generated semigroup S of square integral matrices whether or not the identity matrix belongs to S?". We show that the problem is undecidable starting from dimension four even when the number of matrices in the generator is 48. From this fact, we can immediately derive that the fundamental problem of whether a finite set of matrices generates a group is also undecidable. We also answer several question for matrices over different number fields. Apart from the application to matrix problems, we believe that the Identity Correspondence Problem will also be useful in identifying new areas of undecidable problems in abstract algebra, computational questions in logic and combinatorics on words.Comment: We have made some proofs clearer and fixed an important typo from the published journal version of this article, see footnote 3 on page 1

    Normal origamis of Mumford curves

    Full text link
    An origami (also known as square-tiled surface) is a Riemann surface covering a torus with at most one branch point. Lifting two generators of the fundamental group of the punctured torus decomposes the surface into finitely many unit squares. By varying the complex structure of the torus one obtains easily accessible examples of Teichm\"uller curves in the moduli space of Riemann surfaces. The p-adic analogues of Riemann surfaces are Mumford curves. A p-adic origami is defined as a covering of Mumford curves with at most one branch point, where the bottom curve has genus one. A classification of all normal non-trivial p-adic origamis is presented and used to calculate some invariants. These can be used to describe p-adic origamis in terms of glueing squares.Comment: 21 pages, to appear in manuscripta mathematica (Springer

    Conformal dimension and random groups

    Full text link
    We give a lower and an upper bound for the conformal dimension of the boundaries of certain small cancellation groups. We apply these bounds to the few relator and density models for random groups. This gives generic bounds of the following form, where ll is the relator length, going to infinity. (a) 1 + 1/C < \Cdim(\bdry G) < C l / \log(l), for the few relator model, and (b) 1 + l / (C\log(l)) < \Cdim(\bdry G) < C l, for the density model, at densities d<1/16d < 1/16. In particular, for the density model at densities d<1/16d < 1/16, as the relator length ll goes to infinity, the random groups will pass through infinitely many different quasi-isometry classes.Comment: 32 pages, 4 figures. v2: Final version. Main result improved to density < 1/16. Many minor improvements. To appear in GAF
    corecore